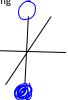
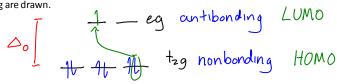
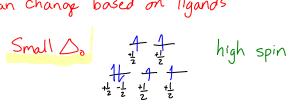

Notes 03/07

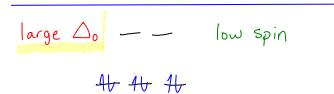

Friday, March 07, 2008 10:04 AM

MO Orbitals

Nonbonding orbitals: d_{xy} , d_{zy} , d_{zy} are nonbonding







In octahedral MO orbital, all bonding orbitals are filled (assuming 12e ·) so for simplicity, jus the eg and t2g are drawn.

Do can change based on ligands

— — eg (antibonding)

___ tzg (nonbonding)

If have a strong bond between ML, bonding orbitals shift down and antibonding shifts up. 2tg is not affected, but eg goes up higher in energy.

SO:

- o strong field ligands gap is larger
- o Weak field ligands gap is smaller

Thus:

- o Strong field tends to be low spin
- o Weak field tends to be high spin

Which ligands are strong or weak field?

Halogens are clearly weak field

Contains water are in middle

CO, Cn etc are strong field

Increasing oxidation state or down the group increases strong field See VOH for list of ligands.

Why is CO strong fiel

M = € C C = 0

synergistic bonding or back bonding

o bonding

CO is IT-acid (accepting e)

Due to back bonding, the M-C is stronger but C-O is weaker

Tegragonal distortion. (characteristic of d 9 complex).

longs Shorte

This type of distortion is Jahn-Teller distortion

D⁸ is square planar

What is geometry of Pd²⁺NH₃?

[Pd(NHz)4]Clz

d8-square planar